

1 Topology and Functional Spaces

Exercise 1.1. Let (X, μ) be a σ -finite measured space, and that $f : X \rightarrow \mathbb{R}$ be a measurable function.

1. Show that

$$\int_X |f| d\mu = \int_0^\infty \mu(X \cap \{x : |f(x)| > t\}) d\mathcal{L}^1(t),$$

where \mathcal{L}^1 is the 1-dimensional Lebesgue measure.

2. Deduce that for all $0 < p < \infty$, we have

$$\int_X |f|^p d\mu = p \int_0^\infty t^{p-1} \mu(X \cap \{x : |f(x)| > t\}) d\mathcal{L}^1(t).$$

3. Show that 1. holds for a general measure, by proving the theorem first in the case of an indicator function, and for positive step functions.

Exercise 1.2. Let $f \in L^1(\mathbb{R}^n)$ be such that

$$\int_{\mathbb{R}^n} f \varphi = 0 \quad \text{for all } \varphi \in \mathcal{D}(\mathbb{R}^n).$$

Show that $f = 0$.

Exercise 1.3. Let X and Y be two Banach spaces, and $\{T_n\}_{n \in \mathbb{N}} \subset \mathcal{L}(X, Y)$ such that for all $x \in X$, $T_n(x)$ converges as $n \rightarrow \infty$ towards a limit denoted by $T(x)$. Show that if $\{x_n\}_{n \in \mathbb{N}} \subset X$ is a sequence such that $x_n \xrightarrow{n \rightarrow \infty} x \in X$, we have $T_n(x_n) \xrightarrow{n \rightarrow \infty} T(x) \in Y$.

Exercise 1.4. Let X and Y be two Banach spaces and let $a : X \times Y \rightarrow \mathbb{R}$ be a bilinear form satisfying :

1. For all $x \in X$, the map $y \mapsto a(x, y)$ is continuous ;
2. For all $y \in Y$, the map $x \mapsto a(x, y)$ is continuous.

Then, show that there exists a constant $C < \infty$ such that

$$|a(x, y)| \leq C \|x\|_X \|y\|_Y \quad \forall x \in X, \forall y \in Y.$$

Exercise 1.5. Let $a = \{a_n\}_{n \in \mathbb{N}} \subset \mathbb{R}$ and $1 \leq p \leq \infty$. Assume that for all $x = \{x_n\}_{n \in \mathbb{N}} \subset l^p(\mathbb{N})$, we have

$$\sum_{n \in \mathbb{N}} |a_n| |x_n| < \infty.$$

Prove that $a \in l^{p'}(\mathbb{N})$.

We recall that for all $1 \leq q \leq \infty$, we have

$$l^q(\mathbb{N}) = \mathbb{R}^{\mathbb{N}} \cap \left\{ x : \|x\|_{l^q} = \left(\sum_{n \in \mathbb{N}} |x_n|^q \right)^{\frac{1}{q}} < \infty \right\}$$

equipped with its natural norm $\|\cdot\|$ is a Banach space (for $q = \infty$, replace the norm above by the sup norm $\|x\|_{l^\infty} = \sup_{n \in \mathbb{N}} |x_n|$).

Exercise 1.6. Let $\{f_n\}_{n \in \mathbb{N}} \subset L^p(\Omega)$ with $1 < p \leq \infty$ and $f \in L^p(\Omega)$. Show that the following properties are equivalent :

1. $f_n \xrightarrow[n \rightarrow \infty]{} f$ in $\sigma(L^p, L^{p'})$.
2. $\|f_n\|_{L^p(\Omega)} \leq C$ and $\int_A f_n d\mathcal{L}^d \xrightarrow[n \rightarrow \infty]{} \int_A f d\mathcal{L}^d$ for all $A \subset \Omega$ of finite measure.

If $p = 1$ and $\mathcal{L}^d(\Omega) < \infty$, show that the previous equivalence holds true.

Remark. The equivalence is false in general due to the possibility of mass « escaping » at infinity. The sequence $\{u_n\}_{n \in \mathbb{N}} = \mathbf{1}_{[n, n+1]} \subset L^1(\mathbb{R})$ furnishes a counter-example.

Exercise 1.7. A map $f : X \rightarrow Y$ is continuous if and only if it is continuous at every point of X .

From the previous property deduce the Theorem 1.1.11 stated in class.